Full Stack Python

EuroPython talk by: Matt Makai, @mattmakai 

 
I expected this talk to be full with buzzwords and it was… but in a good sense. 

 
Makai is the builder of Full Stack Python site as such he spoke about what you need from the moment you have an idea to a python web app until you deploy including all the essential steps – wsgi server, hosting, logging etc.
 
Every layer in the site include relevant link and tutorials. Good starting point for a python web-app developer.
 
The talk was interesting due to Makai enthusiasm to teach and to share his knowledge (and of course to promote his site and that’s legit as well) and his professional knowledge. There are really few people the can speak so fluently for 25 minutes.
 

Andrew Ng and PyStruct meetup

Yesterday I attended the “Andrew Ng and pyStruct” meetup. 

http://www.meetup.com/berlin-machine-learning/events/179264562/

I was lucky enough to get a place to the meetup due to the Germany-Portugal game that happened on the same time 🙂

The first part by Andrew Ng was a video meetup joint to 3 locations – Paris, Zurich and Berlin. Andrew Ng is a co-founder of Coursera and a Machine Learning guru. He teaches the ML course in Coursera which is one of the most popular courses in Coursera (took it myself and it is a very good and structured introduction to machine learning, new session started yesterday). He teaches in Standford and soon he will be leaving to Baidu research.

The talk included 15-20 minutes of introduction to deep learning, recent results,  applications and challenges. He mainly focused on scaling up deep learning algorithms for using billions features \ properties. The rest of the talk was question answering mostly regarding the theoretical aspects of deep learning, future challenges, etc. For me one of the most important things he said was “innovation is a result of team work”.

Some known applications of deep learning is – speak recognition, image processing, etc.

In the end he suggested taking Stanford deep learning tutorial – http://deeplearning.stanford.edu/tutorial/

T.R – there are currently 2 python packages I know which deal with deep learning – 

 The next talk was given by Andreas Mueller. You can find his slides here.

Muelller introduced structured prediction which is a natural extension or a generalization of regression problems to a structured output rather than just a number \ class . Structured learning has advantage over other algorithms of supervised learning as it can learn several properties at once and use the correlations between those properties.

Example – costumers data, several properties of costumers – gender, marriage status, has children, owns a car, etc. One can guess that married and has children properties are highly correlated and that when learning about those properties together there is a better chance of getting good results. It is better than LDA in the sense that it has less classes (not every combination of the variables is a class) and it requires less training data.

Other examples include pixel classification – classifying each pixel to an object in the image and OCR, etc.

He then talked about PyStruct – a python package for structured prediction. Actually not much to add that is not written in the documents. 

Visualization – Data scientist toolkit

Data scientist are said to have better development knowledge than the average statistician and better statistic knowledge than the average developer. However, together with those skills one also needs marketing skills – the ability to communicate your, no so simple job and results to other people. Those people can be the CTO or VP R&D, team members, customers or sales and marketing people. They don’t necessarily share your knowledge or dive into the details as fast as you.

One of the best ways to make data and results accessible is creating visualizations, automatically of course. In this post I’ll review several visualizations tools, mostly for Python with some additional side kicks.

Matplotlib – probably the most known python visualization package. Includes most of the standard charts – bar charts, pie charts, scatters, ability to embed images, etc. Since there are many users using it there are many questions, examples and documentations around the web. However, the downside for me is that it is more complex than it should be. I have used it in several projects and I don’t yet acquired the intuition to fully utilize.

Matplotlib have several extensions including –

graphviz – Designated for drawing graphs. Graph drawing software with python package. pygraphviz is a python package for graphviz which provides a drawing layer and graph layout algorithms. The first downside of this is that you need to download the graphviz software. I have done it several times on several different machines (most of the consist of ubuntu) it never passed smoothly and I was not able to do it only from the command line which make it problematic if one wants to deploy it on remote machines. I believe that it could be done but at the moment I find this process only as an irksome overhead.

Side kicks –

  • PyDot – Implements DOT graph description language. PyDot is basically an interface to interact with PyGraphviz dot layout. The main advantage of the dot files and data is the advantage in standardization – one can create dot file in one process and use it in other process. DOT is an intuitive language which focuses on drawing the graph and not on calculating the graph. I would say that it is the last step in the chain.
  • Networkx – a package for working and manipulating graph. Implements many graph algorithms such as shortest path, clustering, minimum spanning tree, etc. The graphs created in Networkx can be drawn using either matplotlib or pygraphviz and can also create dot files.

Vincent – A relatively new python visualization package. Vincent translates Python to Vega which is a visualization  grammar. I like it because it is easy, interactive and simple to output either as JSON or as HTML . However, I’m not sure that both Vincent and Vega are mature enough at this point to answer all the needs. It is important to mention that Vega is actually a wrapper above D3 which is an amazing tool with growing community.

Additional related tools I’m not (yet) experienced with –

  • xlsxwriter – creating excel files (xlsx format) including embedding charts on those files.
  • plot.ly – very talked about tool for collaborating data and graphing tool which have a Python client. I try to keep my data as private as possible and don’t want to be dependent on internet connection (for example – creating graph with a lot of data) so this is the down side for me in this tool. However, the social \ collaborative aspect of this product is also an important part and the graphing is only one aspect of it.
  • Google charts – same downside as plot.ly – I like to be as independent as possible. However, comparing to plot.ly it looks more mature and has far more options, chart types than plot.ly at this stage and there is also a sand box to play with it. Plot.ly has advantages over Google charts in the ease of usage for non programmers.
  • Bokeh – Nice, interactive charts on large data sets. Maybe the next big thing for plotting in Python.

5 interesting things (16/5/2014)

MailPin -Turn an email to a web page –  For me it is a cool tool that I probably won’t use but it is cool and that is also important  thing those days.
http://mailp.in/
 
10 years to LiMux project – “How Munich switched 15,000 PCS from Windows to Linux”. Interesting both on the technological aspect and both on the sociological \ anthropological aspect.
 
Why Python is Slow: Looking Under the Hood: I really like posts which help me understand better what I’m doing and this one is also very well written. Through Python Weekly.
 
How to Marry The Right Girl: A Mathematical Solution: I must admit that I don’t like those kind of posts or at least their header. I feel they are very sexist not to say misanthropic. However, there was one point which I relate to in this post but on a different scope  work interviews. Doing some work interviews lately, my gut feeling is that being in the first group really harm the chances of getting hired. Many interviewers don’t really know what exactly they are looking for and refine their requirements only after several interviews. To conclude the content was interesting but could be written in a different tone.
 
 
The Economics of Kickstart project: Crowd-funding is one of the latest trends. As in everything there are both advantages and disadvantages. One of the main advantages as I see it is the global exposure to one’s ideas. The down side of this advantage is that it eases the way to still ideas (some my call it inspiration). More over it does not really clearly if it is always profitable as expected. More about it in the attached post.